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Announcements!
● Read the Weekly Post

● Tarang’s OH 4-6p in Woz Lounge (Zoom also–same link as lecture)
○ First 30 minutes for conceptual question

○ Last 90 minutes for reading Note 5 together and question about the note

○ Will not prioritize HW questions. Use regular OH for that. 

● HW 2 and Vitamin 2  have been released, due Thu (grace period Fri)

● We are adding a bit more OH support, but also work on the HW early

● Throughout this lecture definitions will be underlined
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Undirected Simple Graph Definitions
An undirected simple graph G = (V, E) is defined by 
1. A set V of vertices. Sometimes we may call it a node.
2. A set E of edges
Where edges in E are of the form {u, v} for u, v in V and u ≠ v. 
A graph being simple here means no parallel edges
A graph being undirected means there’s no direction to the edges
Examples: 
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Directed Graph Definitions
Edges in a directed graph are defined as (u, v). That is, the order of the 
vertices matters. Therefore, (u, v) ≠ (v, u). 
Examples: 
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Edge and Degree Definitions
Given an edge e = {u, v} we say 

● e is incident to u and v
● u and v are neighbors
● u and v are adjacent
● The degree of a vertex v is the number of incident edges

○ deg(v) = |{v in V | {u, v} in E}|

Examples:
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Summary Questions I
How many nodes in this graph? _____

How many edges? _____

Which vertex has the max degree? _____

Which vertex has the min degree? _____

Which vertices is this edge incident on? ____

What is the sum of the degrees? ______
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Handshake Lemma
Lemma: The sum of the degree of all the vertices is equal to 2|E| 
Proof: 
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Path, Cycles, Walks and Tours
Deals with Vertices (though may imply things about edges):

Path: A sequence of vertices in G, generally with no repeated vertices.

Cycle: A path in G where the only repeated vertex is the first one and last one.

Deals with Edges (though may imply things about vertices):

Walk: Is a sequence of edges with possible repeated vertex or edges. 

Tour: A walk that starts and ends at the same vertex. 

Eulerian walk: A walk where each edge is visited exactly once. 

Eulerian tour: An Eulerian walk that starts and ends at the same vertex
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Summary Questions II
Give an example of length 3 cycle? ________

Give an example of a path from 2 to 8? _______

Give the longest simple path? ___________

How many connected components are there? ___

Give an example of length 4 tour? __________
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Connectivity
A graph G is said to be connected if there exists a path between any two 
vertices.

Examples: 

Any graph always consists of a collections of connected components. A 
connected component is a set of vertices in the graph that are connected. 
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Eulerian Tours
Eulerian walk: A walk where each edge is visited exactly once. 

Eulerian tour: An Eulerian walk that starts and ends at the same vertex

Theorem: A undirected graph G has an Eulerian tour iff G is even degree, and 
connected. 

Proof: in the notes
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Summary Questions III
Is there an Eulerian Tour and if so provide a tour? 

________________________________

Why? ___________________

How many connected components now? _____

Connected components now? _____

What about now? _____
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Graph Proof
False Claim: If every vertex in an undirected graph has degree at least 1, then the graph is connected. 

Proof: We use induction on the number of vertices n ≥ 1

Base Case: There is only one graph with a single vertex and it has degree 0. Thus, vacuously true. 

Inductive Hypothesis: Assume the claim is true for some n ≥ 1

Inductive Step: We prove the claim is also true for n + 1. Consider an undirected graph with n 
vertices and each has degree greater than 1. By the inductive hypothesis, this graph is connected. 
Now add one more vertex x to obtain a graph with (n + 1) vertices. 

Since, the previous graph was connected, and x is connected to some node y then there’s a path 
between x and any other vertex through y, since by definition there’s a path from y to any other 
vertex. Thus, the graph is connected. 
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Minimum Edges for Connectivity
Theorem: Any connected graph with n vertices must have at least n-1 edges
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Complete Graphs
A graph G is complete if it contains the maximum number of edges possible.

Examples: 
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Trees
The following definitions are all equivalent to show that 
a graph G is a tree. 

1. G is connected and contains no cycles

2. G is connected and has n-1 edges (where n = |V|)

3. G is connected, and the remove of any single edge 

disconnects G

4. G has no cycles, and the addition of any single edge 

creates a cycle
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Tree Definitions are Equivalent
Theorem: For a connected graph G it contains no cycles iff it has n-1 edges. 
Proof: 
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Tree Definitions are Equivalent (cont. )
Theorem: For a connected graph G it contains no cycles iff it has n-1 edges. 
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Bipartite Graphs
A graph G is bipartite if the vertices can be split in two groups (L or R) and 
edges only go between groups.

Examples: 
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