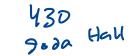
Lecture 2A: Graph Theory I

UC Berkeley EECS 70 Summer 2022 Tarang Srivastava

Announcements!

• Read the Weekly Post



- Tarang's OH 4-6p in Woz Lounge (Zoom also-same link as lecture)
 - First 30 minutes for conceptual question
 - Last 90 minutes for reading Note 5 together and question about the note
 - Will not prioritize HW questions. Use regular OH for that.
- HW 2 and Vitamin 2 have been released, due Thu (grace period Fri)
- We are adding a bit more OH support, but also work on the HW early
- Throughout this lecture **<u>definitions</u>** will be underlined

182 10220

Undirected Simple Graph Definitions

An undirected simple **graph** G = (V, E) is defined by

1. A set V of <u>vertices</u>. Sometimes we may call it a <u>node</u>.

ミレノノニ

2. A set E of <u>edges</u>

EA, 83 = EB, 43

Where edges in E are of the form $\{u, v\}$ for u, v in V and $u \neq v$.

A graph being **<u>simple</u>** here means no parallel edges

A graph being **<u>undirected</u>** means there's no direction to the edges

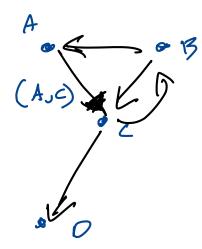
Su uz

Examples:

Directed Graph Definitions

Edges in a <u>directed graph</u> are defined as (u, v). That is, the order of the vertices matters. Therefore, $(u, v) \neq (v, u)$. $(u, v) \neq (v, u)$. Examples:

T tope



Edge and Degree Definitions

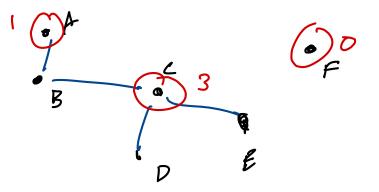
Given an edge $e = \{u, v\}$ we say

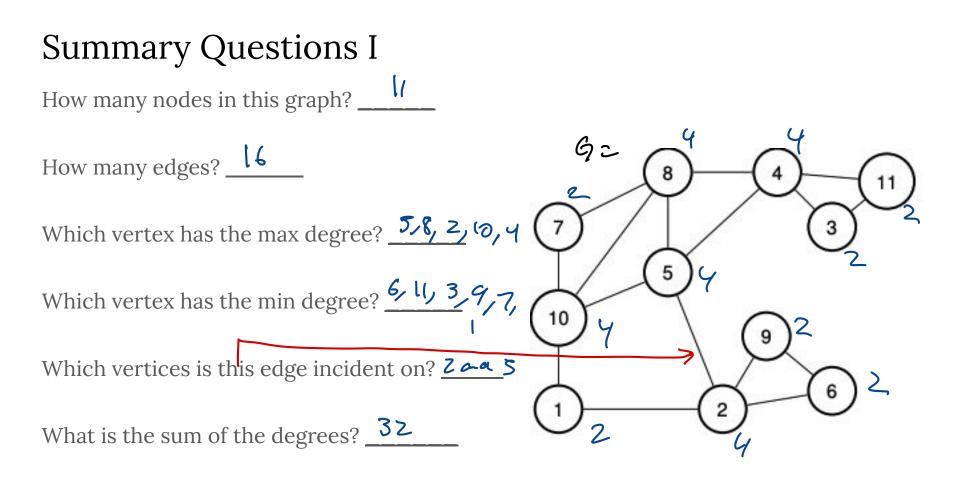
- e is **<u>incident</u>** to u and v
- *u* and *v* are <u>neighbors</u>
- *u* and *v* are <u>adjacent</u>
- <u>ghbors</u>

N

- The <u>degree</u> of a vertex v is the number of incident edges
 - $deg(v) = |\{v \text{ in } V \mid \{u, v\} \text{ in } E\}|$

Examples:





 $A = \{1, 2, 3\}$ 1 size Handshake Lemma |A| = 3Lemma: The sum of the degree of all the vertices is equal to $2|E|^{2}$ "cardinally" Proof: Proceed to the degree of all the vertices is equal to $2|E|^{2}$ Proof: Proceed by Induction on IEI=m Base Case: M=0. A graph has no edges if all the vertices are ising (i.e. no replaces) this each varies is lynce o Ind Hyp: Assume claim holds for m=k edges, ... sund dances is 2K the Step: Consider on arbitrory graph Gwith K+1 edges. Remake any edge from G. The iew graph has the edges, and by the Wuthe hypotrosis sum. of denses is 2k, Then adding back the ege we and I degree to each incident vertex. This sum of dgas $15 n \cdot \sqrt{3} 2k + 2 = 2(k + 1) as deslie$ $<math>5 \pm \frac{1}{2} = \frac{1}{2} \frac{1}$

Path, Cycles, Walks and Tours

Deals with Vertices (though may imply things about edges): A, o, c Path: A sequence of vertices in G, generally with no repeated vertices.

<u>Cycle</u>: A path in G where the only repeated vertex is the first one and last one.

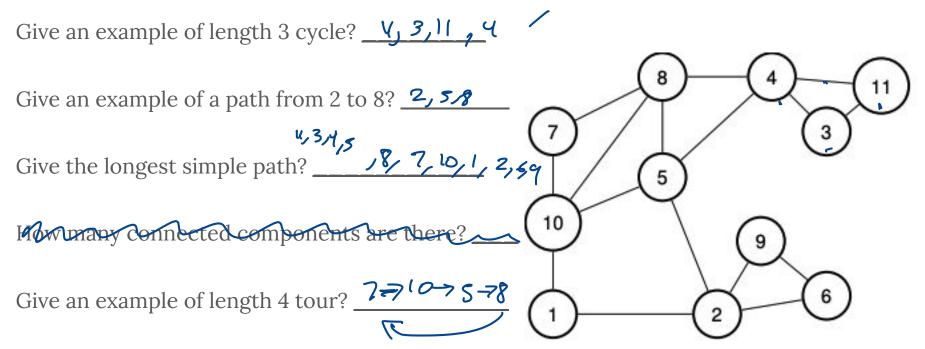
Deals with Edges (though may imply things about vertices): $A \to B \to C$ **Walk**: Is a sequence of edges with possible repeated vertex or edges.

Tour: A walk that starts and ends at the same vertex.

Eulerian walk: A walk where each edge is visited exactly once.

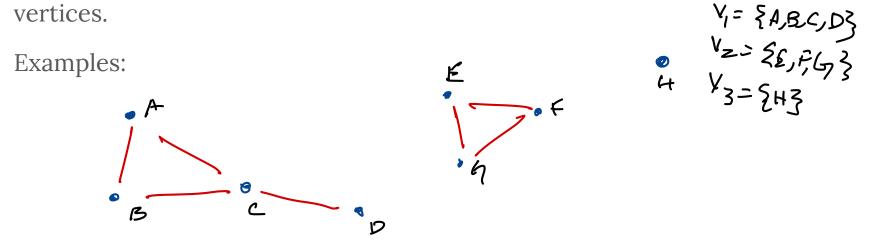
<u>Eulerian tour</u>: An Eulerian walk that starts and ends at the same vertex

Summary Questions II



Connectivity

A graph G is said to be **<u>connected</u>** if there exists a path between any two vertices. $V_i = \xi_{A,B,C}$



Any graph always consists of a collections of <u>connected components.</u> A connected component is a set of vertices in the graph that are connected.

Eulerian Tours

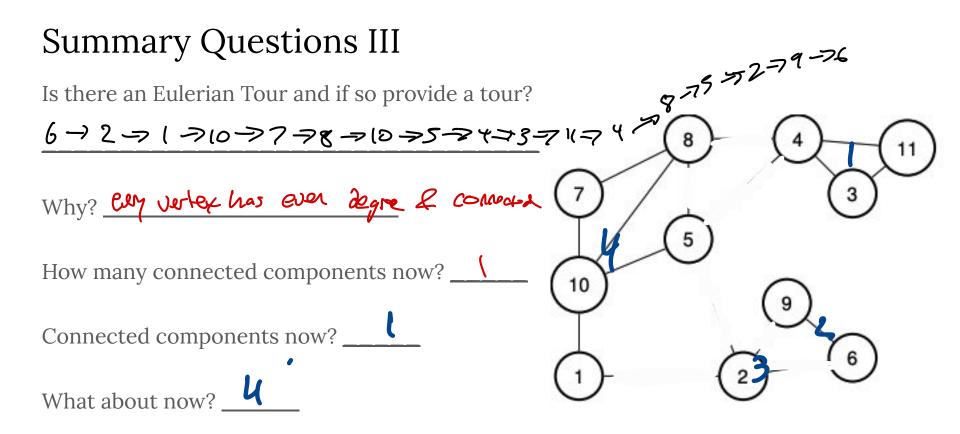
<u>Eulerian walk</u>: A walk where each edge is visited exactly once.

Eulerian tour: An Eulerian walk that starts and ends at the same vertex

Theorem: A undirected graph G has an Eulerian tourriff G is even degree, and connected.

Proof: in the notes

Oxcept fue Verties tot Ne off



Graph Proof 98



False Claim: If every vertex in an undirected graph has degree at least 1, then the graph is connected. Proof: We use induction on the number of vertices $n \ge 1$

- Base Case: There is only one graph with a single vertex and it has degree 0. Thus, vacuously true. Multiple Hypothesis: Assume the claim is true for $n \ge 1$
- Inductive Step: We prove the claim is also true for n + 1. Consider an undirected graph with n vertices and each has degree greater than 1. By the inductive hypothesis, this graph is connected $\sqrt{}$ Now add one more vertex x to obtain a graph with (n + 1) vertices.

Since, the previous graph was connected, and x is connected to some node y then there's a path between x and any other vertex through y, since by definition there's a path from y to any other vertex. Thus, the graph is connected.

p(n) => P(nti) Minimum Edges for Connectivity Theorem: Any connected graph with n vertices must have at least n-1 edges vertices n = |x| Induction 01 0< (1)-1 BASE Case: N=(0 02905 $S = \partial Q_{f}(v)$ Ind Hyp: Assure claim holds ISNSK fer Ind Step: Consider a connocted graph & with u= K+1 vertices. Remove an articlery vertex v. Removing 4 suppose creaks 5 conno Colla components. By story induction and connect has Coyes, NZ-1 and the second s ve jpL back 5 edges to ad2 K1+K2 + ...+Kg -1-1-1 -- 1 (un1) -1 2 K - 9 1E(> K

komplete Graphs

A graph G is **<u>complete</u>** if it contains the maximum number of edges possible.

k.

1/(

ku

Examples:

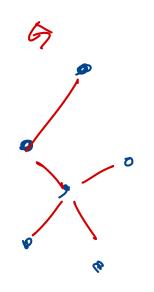
0

K

Trees

The following definitions are all equivalent to show that a graph G is a **tree**.

- 1. G is connected and contains no cycles
- 2. G is connected and has n-1 edges (where n = |V|)
- 3. G is connected, and the remove of any single edge disconnects G
- 4. G has no cycles, and the addition of any single edge creates a cycle



Tree Definitions are Equivalent

Theorem: For a connected graph G it contains no cycles iff it has n-1 edges. Proof:

Tree Definitions are Equivalent (cont.)

Theorem: For a connected graph G it contains no cycles iff it has n-1 edges.

Bipartite Graphs

A graph G is **<u>bipartite</u>** if the vertices can be split in two groups (L or R) and edges only go between groups.

Examples: